Name:

Question 1 (2 pts). Mark each statement true or false, and give a brief justification of your answer.

(a) If an $n \times n$ matrix A is invertible, then its inverse can be written as a linear combination of $I, A, A^2, \dots, A^{n-1}$.

True. This follows from the Cayley-Hamilton theorem. In particular it was shown on the homework that if *A* is invertible with characteristic polynomial $(-1)^n t^n + a_{n-1} t^{n-1} + \cdots + a_0$ then $a_0 \neq 0$ and $A^{-1} = -\frac{1}{a_0}((-1)^n A^{n-1} + a_{n-1} A^{n-2} + \cdots + a_1 I)$.

(b) Let *T* be a linear operator on a vector space *V*. If every non-trivial *T*-invariant subspace of *V* contains an eigenvector, then *T* is diagonalizable.

False. It was proven on the homework that this is true whenever the characteristic polynomial of *T* splits, and for this *T* need not be diagonalizable. Concretely, the linear map on \mathbb{R}^2 given by $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is a counterexample.

Question 2 (4pts). Consider the matrix

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix},$$

and *T* the linear operator on $V = M_{2\times 2}(\mathbb{R})$ given by left multiplication by *A*, i.e. T(M) = AM. Find a basis for the *T*-cyclic subspace generated by the identity matrix *I*.

The *T*-cyclic subspace generated by *I* is

$$\operatorname{Span}(I, T(I), T^2(I), \ldots) = \operatorname{Span}(I, A, A^2, \ldots)$$

because T(I) = AI = A, and $T^2(I) = A(AI) = A^2$, etc. A basis is given by $\{I, A\}$. It is possible to see this by computing A^2 and showing that it is a linear combination of A and I; a faster way is to use the Cayley-Hamilton theorem, which says that $ch_A(A) = 0$, and since ch_A is a degree 2 polynomial, the equation $ch_A(A) = 0$ shows that I, A, A^2 are linearly dependent. More concretely, the characteristic polynomial of A is $(-t+1)(-t+4) - 6 = t^2 - 5t - 2$, and thus

$$A^2 = 5A + 2I$$

gives A^2 as a linear combination of A and I.

Question 3 (4 pts). Let *T* be a diagonalizable linear operator on a finite-dimensional inner product space *V*. Show that if $\langle Tx, x \rangle = 0$ for all $x \in V$, then T = 0.

Since *T* is diagonalizable, we can choose a basis $\beta = \{v_1, ..., v_n\}$ of *V* consisting of eigenvectors for *T*, say $Tv_i = \lambda_i v_i$. Combining this equation with the fact that $\langle Tx, x \rangle = 0$ for any $x \in V$, and using the linearity of the inner product in the first slot, we find

$$0 = \langle Tv_i, v_i \rangle = \langle \lambda_i v_i, v_i \rangle = \lambda_i \langle v_i, v_i \rangle.$$

One of the axioms of an inner product is that $\langle x, x \rangle = 0$ iff x = 0; since $v_i \neq 0$ it must be that $\lambda_i = 0$. Since this is true for all λ_i , we see that $Tv_i = 0$ for v_1, \ldots, v_n , and this implies T = 0.